Inorganic and Hybrid Materials

The applications of Inorganic and Hybrid Materials underpin a large part of modern life.

From batteries and screens on mobile phones, to catalytic converters in car exhausts and lightweight materials used in the building of cars and even space vehicles materials play an important role.

The Inorganic and Hybrid Materials team is truly multidisciplinary and we work on a number of types of materials including metal organic frameworks (MOFs), zeolites, inorganic and organic (non-bio) polymers, oxides, semiconductors and molecular materials. Our work sees application in a number of different areas which includes anti-microbial activity, light generation, photovoltaics and energy generation, molecular magnetics, catalysis, gas storage and drug delivery. Our experimental work is underpinned by theoretical studies in both chemistry and physics.

Explore Inorganic and Hybrid Materials

 

  • Salcedo, I. R.; Colodrero, R. M.; Bazaga-García, M.; López-González, M.; Del Río, C.; Xanthopoulos, K.; Demadis, K. D.; Hix, G. B.; Furasova, A. D.; Choquesillo-Lazarte, D.; Olivera-Pastor, P.; Cabeza, A., Phase Transformation Dynamics in Sulfate-Loaded Lanthanide Triphosphonates. Proton Conductivity and Application as Fillers in PEMFCs. ACS Applied Materials and Interfaces 2021, 13 (13), 15279 - 15291. publisher: https://doi.org/10.1021/acsami.1c01441; open access: https://wlv.openrepository.com/handle/2436/624023
  • Al-Taie, Z. S.; Anetts, S. R.; Christensen, J.; Coles, S. J.; Horton, P. N.; Evans, D. M.; Jones, L. F.; de Kleijne, F. F. J.; Ledbetter, S. M.; Mehdar, Y. T. H.; Murphy, P. J.; Wilson, J. A., Proline derived guanidine catalysts forge extensive H-bonded architectures: a solution and solid state study. RSC Advances 2020, 10 (38), 22397-22416. publisher: https://doi.org/10.1039/C9RA07508A; open access: https://wlv.openrepository.com/handle/2436/623270   

  • Slater-Parry, M. E.; Durrant, J. P.; Howells, J. M.; Pitak, M. B.; Horton, P. N.; Klooster, W. T.; Coles, S. J.; O'Connor, H. M.; Brechin, E. K.; Barra, A.-L.; Jones, L. F., Crowding out: ligand modifications and their structure directing effects on brucite-like {Mx(μ3-OH)y} (M = Co(ii), Ni(ii)) core growth within polymetallic cages. Dalton Transactions 2019, 48 (4), 1477-1488. publisher: https://doi.org/10.1039/C8DT04229B; open access: https://wlv.openrepository.com/handle/2436/623018
  • Fugu, M. B.; Ellaby, R. J.; O'Connor, H. M.; Pitak, M. B.; Klooster, W.; Horton, P. N.; Coles, S. J.; Al-mashhadani, M. H.; Perepichka, I. F.; Brechin, E. K.; Jones, L. F., Mono- and ditopic hydroxamate ligands towards discrete and extended network architectures. Dalton Transactions 2019, 48 (27), 10180-10190. publisher: https://doi.org/10.1039/C9DT01531K; open access: https://wlv.openrepository.com/handle/2436/623017